@ARTICLE{27043461_213459878_2017,
author = {Georg Mueller},
keywords = {, social contagion, political conflict, reforms, chaos theory, mathematical modelscomputer simulation},
title = {Getting Order Out of Chaos: A Mathematical Model of Political Conflict},
journal = {The Russian Sociological Review},
year = {2017},
volume = {16},
number = {4},
pages = {37-52},
url = {https://sociologica.hse.ru/en/2017-16-4/213459878.html},
publisher = {},
abstract = {Time series data about violent internal conflicts such as protests or riots often display irregular fluctuations. This article argues that these fluctuations are manifestations of a deterministic chaos that can be described by a relatively simple difference equation. It presents a mathematical contagion model of the interaction between three groups: (a) already mobilized rebellious citizens, who are protesting against the government and its policies, (b) initially non-rebellious but frustrated groups, which become mobilized by imitating the rebels, and (c) repressive governmental forces, which attempt to curb the rebellion and reduce the number of mobilized persons. The integration of these three processes results in a logistic growth model, which converges for many parameter configurations to stable shares of mobilized protesters, including in certain situations also zero-protest. However, for other specific parameters this logistic process may result in chaotic fluctuations in protest actions, which are dangerous to the regime as they are unpredictable and often very massive. By computer-simulations, the article explores the consequences of the different parameter configurations for protest dynamics.In order to ensure their political survival, most governments have a vital interest in getting from chaotic conflict dynamics to a stable equilibrium of protest, preferably at the level of zero. They may actively do so (i) by reforms which reduce the share of frustrated citizens who can be mobilized for protest (ii) by the intimidation and/or repression of protesters, (iii) by censoring media reports about protests such that the conflicts become less contagious. A formal analysis of the model shows that the most successful of the three strategies are reforms, which reduce the share of frustrated citizens and thus lead to a new political order.},
annote = {Time series data about violent internal conflicts such as protests or riots often display irregular fluctuations. This article argues that these fluctuations are manifestations of a deterministic chaos that can be described by a relatively simple difference equation. It presents a mathematical contagion model of the interaction between three groups: (a) already mobilized rebellious citizens, who are protesting against the government and its policies, (b) initially non-rebellious but frustrated groups, which become mobilized by imitating the rebels, and (c) repressive governmental forces, which attempt to curb the rebellion and reduce the number of mobilized persons. The integration of these three processes results in a logistic growth model, which converges for many parameter configurations to stable shares of mobilized protesters, including in certain situations also zero-protest. However, for other specific parameters this logistic process may result in chaotic fluctuations in protest actions, which are dangerous to the regime as they are unpredictable and often very massive. By computer-simulations, the article explores the consequences of the different parameter configurations for protest dynamics.In order to ensure their political survival, most governments have a vital interest in getting from chaotic conflict dynamics to a stable equilibrium of protest, preferably at the level of zero. They may actively do so (i) by reforms which reduce the share of frustrated citizens who can be mobilized for protest (ii) by the intimidation and/or repression of protesters, (iii) by censoring media reports about protests such that the conflicts become less contagious. A formal analysis of the model shows that the most successful of the three strategies are reforms, which reduce the share of frustrated citizens and thus lead to a new political order.}
}